

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Design and Code Communication

 /**

 * Get the {@linkplain GuessGame game} for the current user.

 * The user is identified by a {@linkplain Session browser session}.

 *

 * @param session

 * The HTTP {@link Session}, must not be null

 *

 * @return

 * An existing or new {@link GuessGame}

 *

 * @throws NullPointerException

 * when the session parameter is null

 */

 public GuessGame get(final Session session)

Your communication about a project is not just in
the form of presentations and meetings.

 The systems that you will develop are complex

and have both static and dynamic design

characteristics.

 To describe those characteristics you will use

several UML models.
• Domain, class, statechart, sequence

 Those who must use your implementation need

a more productive description that studying lines

of code.

 Those who must maintain your implementation

must be able to quickly understand the code.

2

The domain model describes the product owner's
understanding of the application's scope.

Domain model
• Describes the context in which the application will

operate.

• Helps developers share the product owner's

understanding of this context.

• Describes the product owner's world view of the

domain entities and relationships between them.

 The domain model will help developers create a

structure for the implementation to the extent that

is possible.

3

The class model defines the static structure of your
implementation.

 It captures many constructs embodied in your

implementation
• Class attributes and methods with visibilities

• Relationships between classes with multiplicities

• Navigation between classes

• Structure via inheritance/interface

• Architectural tiers

 The domain model inspires the first-cut for the

implementation class structure.
• Try to have the software structure match the

product owner's domain structure, i.e. domain

entities become implementation classes

4

You also must describe the application's dynamic
characteristics to fully describe its operation.

 The dynamic behavior is often state-based and

succinctly described with a statechart.
• Exchanges between a client and web application

• User interface operation

• Communication protocols

• Individual classes with state-based characteristics

An application's execution of a feature/operation

involves multiple classes across architectural tiers.
• The sequence diagram indicates which classes and

methods are involved in an execution scenario.

• Formulate a user story solution with one or more

sequence diagrams created before starting the

implementation.

5

How your code "reads" is critically important for
the humans who will read it.

Any fool can write code that a computer can

understand. Good programmers write code that

humans can understand.

Refactoring: Improving the Design of Existing Code

Martin Fowler, et. al (1999)

6

Code is read by humans as much as by machines.

Code must be readable and understandable by all

team members.

Clear code communication includes:
• A shared code style

• Use of good, meaningful names

• Component APIs are clearly documented

• Algorithms are clarified using in-line comments

• Indication of incomplete or broken code

7

A shared code style is good etiquette.

No code style is inherently better than any other

one.

A code style includes:
• Spaces vs tabs

• Where to put curly-braces

• Naming conventions
 CamelCase for class names

 UPPER_CASE for constants

 lowerCamelCase for attribute and method names

• And so on

Every team should choose a style and stick to it.
• IDEs provide support for defining a code style

• If your team cannot choose one then we recommend

using Google Java style (see resources)

8

Make names reflect what they mean and do.

Dos:
• Use names that reflect the purpose

• Use class names from analysis and domain model

• Use method names that are verbs in your analysis

• Use method names that describe what it does not
how it does it

Don'ts:
• Don't abbreviate; spell it out
 pricePerUnit is better than pPU or worse just p

• Don't use the same local variable for two purposes;

create a new variable with an appropriate name

• Don't use "not" in a name
 isValid is better than isNotValid.

9

Document your component's API.

 In Java the /** … */ syntax is used to denote a

documentation for the thing it precedes.

 For example:
/**

 * A single "guessing game".

 *

 * @author Joe Cool

 */

public class GuessGame

At a minimum you should document all public

members.
• Also good to document all methods including private

methods

• Document attributes with complex data structures

10

A method's javadoc must explain how to use the
operation.

Every method must have an opening statement

that expresses what it does.
• Keep this statement concise

• Additional statements can be added for clarification

Document the method signature
• Use @return to describe what is returned

• Use @param to describe each parameter

• Use @throws to describe every exception explicitly

thrown by the method

 Link to other classes
• Use @link to link to classes

• Use @linkplain in opening statement

11

Example method javadocs.

 /**

 * Get the {@linkplain GuessGame game} for the current user.

 * The user is identified by a {@linkplain Session browser session}.

 *

 * @param session

 * The HTTP {@link Session}, must not be null

 *

 * @return

 * An existing or new {@link GuessGame}

 *

 * @throws NullPointerException

 * when the session parameter is null

 */

 public GuessGame get(final Session session)

12

Use @linkplain in

the opening

statement.

Use @link in all

other clauses.

Use in-line comments to communicate algorithms
and intention.

Use in-line comments to describe an algorithm
• Dos:
 Use pseudo-code steps

 Explain complex data structures

• Don'ts:
 Don't repeat the code in English
count++; // increment the count

Use comments to express issues and intentions
• A TODO comment hints at a future feature

• A FIX (or FIXME) comment points to a known bug

that is low priority

13

