Design and Code Communication

Die Monopoly Game Board
2 dplayed with played on &
Count
2
A A
takes turn 9\3‘!%' defines a
using location on
2.8 40
ﬁayar Piece Bquare
4 represents 0.8 isonk
Character Location

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Depressurized

Open outer [Pressurized)/
Depressurize airlock

Pressurized

Doors closed

i sl

<Java Swing APl
JComponent

#paintComponent

Domains <Domains
%) DrawingCanvas : Shape
tion : Fosition
#paintComponent +addshape (Shape s) (Position):void
tdraw (Graphics o) .

Property

Litility Pail

Open inner [Pressurized)/
Unlock inner

Close inneriLock inner

Open outer [Depressurized)/
Unlack outer

Close outer/Lock outer

Pressurizing

Open inner [Depressurized)/
Pressurize airlock

Inner door open

Outer door open

«Domainy

Circle Rectangle
int -width : int
“height : int

+drau(Graphics g) 5

+hasPoint

(Graphics g)
+hasPoint

: Game ‘ ‘Mmlp\l\nd\lwéw‘ ‘ Teamplatetngine
— T

attribute(PLAYERSERVICE_KEY)
tribute{PLAYERSERVICE_KEY)

[no game] <ccreates>

Get data to set view map

<<createss

/‘k*
* Get the {@linkplain GuessGame game} for the current user.
* The user is identified by a {@linkplain
*
* session
* The HTTP {@link Session}, must not be null
*
*
* An existing or new {@link GuessGame}
*
* NullPointerException
* when the session parameter is null
*/

public GuessGame get (final Session session)

Session browser session}.

Software Engineering;

Rochester Institute

of Technology

Your communication about a project is not just in
the form of presentations and meetings.

* The systems that you will develop are complex
and have both static and dynamic design
characteristics.

» To describe those characteristics you will use

several UML models.
 Domain, class, statechart, sequence

* Those who must use your implementation need
a more productive description that studying lines
of code.

* Those who must maintain your implementation
must be able to quickly understand the code.

The domain model describes the product owner's
understanding of the application's scope.

= Domain model

* Describes the context in which the application will
operate.

* Helps developers share the product owner's
understanding of this context.

e Describes the product owner's world view of the
domain entities and relationships between them.

* The domain model will help developers create a
structure for the implementation to the extent that
IS possible.

eeeeeeeeeeeeeeeeee

The class model defines the static structure of your
Implementation.

" |t captures many constructs embodied in your

Implementation

« Class attributes and methods with visibilities

« Relationships between classes with multiplicities
* Navigation between classes

« Structure via inheritance/interface

« Architectural tiers

* The domain model inspires the first-cut for the

Implementation class structure.

* Try to have the software structure match the
product owner's domain structure, i.e. domain
entities become implementation classes

You also must describe the application's dynamic
characteristics to fully describe its operation.

* The dynamic behavior is often state-based and

succinctly described with a statechart.

« Exchanges between a client and web application

« User interface operation

« Communication protocols

 Individual classes with state-based characteristics

= An application's execution of a feature/operation

Involves multiple classes across architectural tiers.

 The sequence diagram indicates which classes and
methods are involved in an execution scenario.

 Formulate a user story solution with one or more
sequence diagrams created before starting the

Implementation. ‘@

Rochester Institute

How your code "reads" is critically important for
the humans who will read it.

Any fool can write code that a computer can

understand. Good programmers write code that
humans can understand.

Refactoring: Improving the Design of Existing Code
Martin Fowler, et. al (1999)

Rochester Institute

Code is read by humans as much as by machines.

» Code must be readable and understandable by all
team members.

» Clear code communication includes:
A shared code style
« Use of good, meaningful names
« Component APIs are clearly documented
« Algorithms are clarified using in-line comments
 Indication of incomplete or broken code

A shared code style is good etiguette.

* No code style is inherently better than any other
one.

= A code style includes:
« Spaces vs tabs
 Where to put curly-braces

« Naming conventions
¢ CamelCase for class names
* UPPER_CASE for constants
¢ lowerCamelCase for attribute and method names

* And so on

» Every team should choose a style and stick to it.
 IDEs provide support for defining a code style
* If your team cannot choose one then we recommend
using Google Java style (see resources) @

Make names reflect what they mean and do.

" Dos:
 Use names that reflect the purpose
« Use class names from analysis and domain model
 Use method names that are verbs in your analysis

 Use method names that describe what it does not
how It does It

* Don'ts:
 Don't abbreviate; spell it out
¢ pricePerUnit IS better than pPU or worse just p
 Don't use the same local variable for two purposes;
create a new variable with an appropriate name

e Don't use "not" In a name
¢ isvValid is better than isNotvalid.

Document your component's API.

"InJavathe /** .. */ syntaxis used to denote a
documentation for the thing it precedes.

» For example:
/**

* A single "guessing game".
*

* Joe Cool
*/

public class GuessGame

= At a minimum you should document all public

members.

* Also good to document all methods including private
methods

« Document attributes with complex data structures (A

oftware Engineerin
10 Rochester Institute
echnol

A method's javadoc must explain how to use the
operation.

* Every method must have an opening statement

that expresses what it does.
« Keep this statement concise
 Additional statements can be added for clarification

* Document the method signature
 Use @returnto describe what is returned
 Use @paramto describe each parameter
 Use @throws to describe every exception explicitly
thrown by the method

= |ink to other classes
e Use @1inkto link to classes
« Use @linkplainin opening statement

11

tttttttttttttttttt

Example method javadocs.

12

Use @linkplain in

Jxx the opening
* Get the {@linkplain GuessGame gamej} tfor the current user. statement
* The user is identified by a {@linkplain Session browser session}
*
* session
* The HTTP {@link Session}, must not be null : :
) Use @link in all
* other clauses.
* An existing or new {@link GuessGame}
*
* NullPointerException
* when the session parameter is null
*

/

public GuessGame get (final Session session)

get

public GuessCGCuame get(spark.Session sessinn)

Get the game for the current user. The user is identified by a browser session.
Parameters:
session - The HTTP Session, must/not be null

Returns:

An existing or new GuessGame

Throws:

NullPointerException - when the session parameter is null

)

Software Engineering

Rochester Institute
of Technology

Use in-line comments to communicate algorithms
and intention.

» Use In-line comments to describe an algorithm

* Dos:
+ Use pseudo-code steps
+ Explain complex data structures

e Don'ts:
* Don't repeat the code in English
count++; // increment the count

» Use comments to express issues and intentions
« A TODO comment hints at a future feature
* A FIX (or FIXME) comment points to a known bug
that is low priority

13

eeeeeeeeeeeeeeeeee

