

SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Design and Code Communication

 /**

 * Get the {@linkplain GuessGame game} for the current user.

 * The user is identified by a {@linkplain Session browser session}.

 *

 * @param session

 * The HTTP {@link Session}, must not be null

 *

 * @return

 * An existing or new {@link GuessGame}

 *

 * @throws NullPointerException

 * when the session parameter is null

 */

 public GuessGame get(final Session session)

Your communication about a project is not just in
the form of presentations and meetings.

 The systems that you will develop are complex

and have both static and dynamic design

characteristics.

 To describe those characteristics you will use

several UML models.
• Domain, class, statechart, sequence

 Those who must use your implementation need

a more productive description that studying lines

of code.

 Those who must maintain your implementation

must be able to quickly understand the code.

2

The domain model describes the product owner's
understanding of the application's scope.

Domain model
• Describes the context in which the application will

operate.

• Helps developers share the product owner's

understanding of this context.

• Describes the product owner's world view of the

domain entities and relationships between them.

 The domain model will help developers create a

structure for the implementation to the extent that

is possible.

3

The class model defines the static structure of your
implementation.

 It captures many constructs embodied in your

implementation
• Class attributes and methods with visibilities

• Relationships between classes with multiplicities

• Navigation between classes

• Structure via inheritance/interface

• Architectural tiers

 The domain model inspires the first-cut for the

implementation class structure.
• Try to have the software structure match the

product owner's domain structure, i.e. domain

entities become implementation classes

4

You also must describe the application's dynamic
characteristics to fully describe its operation.

 The dynamic behavior is often state-based and

succinctly described with a statechart.
• Exchanges between a client and web application

• User interface operation

• Communication protocols

• Individual classes with state-based characteristics

An application's execution of a feature/operation

involves multiple classes across architectural tiers.
• The sequence diagram indicates which classes and

methods are involved in an execution scenario.

• Formulate a user story solution with one or more

sequence diagrams created before starting the

implementation.

5

How your code "reads" is critically important for
the humans who will read it.

Any fool can write code that a computer can

understand. Good programmers write code that

humans can understand.

Refactoring: Improving the Design of Existing Code

Martin Fowler, et. al (1999)

6

Code is read by humans as much as by machines.

Code must be readable and understandable by all

team members.

Clear code communication includes:
• A shared code style

• Use of good, meaningful names

• Component APIs are clearly documented

• Algorithms are clarified using in-line comments

• Indication of incomplete or broken code

7

A shared code style is good etiquette.

No code style is inherently better than any other

one.

A code style includes:
• Spaces vs tabs

• Where to put curly-braces

• Naming conventions
 CamelCase for class names

 UPPER_CASE for constants

 lowerCamelCase for attribute and method names

• And so on

Every team should choose a style and stick to it.
• IDEs provide support for defining a code style

• If your team cannot choose one then we recommend

using Google Java style (see resources)

8

Make names reflect what they mean and do.

Dos:
• Use names that reflect the purpose

• Use class names from analysis and domain model

• Use method names that are verbs in your analysis

• Use method names that describe what it does not
how it does it

Don'ts:
• Don't abbreviate; spell it out
 pricePerUnit is better than pPU or worse just p

• Don't use the same local variable for two purposes;

create a new variable with an appropriate name

• Don't use "not" in a name
 isValid is better than isNotValid.

9

Document your component's API.

 In Java the /** … */ syntax is used to denote a

documentation for the thing it precedes.

 For example:
/**

 * A single "guessing game".

 *

 * @author Joe Cool

 */

public class GuessGame

At a minimum you should document all public

members.
• Also good to document all methods including private

methods

• Document attributes with complex data structures

10

A method's javadoc must explain how to use the
operation.

Every method must have an opening statement

that expresses what it does.
• Keep this statement concise

• Additional statements can be added for clarification

Document the method signature
• Use @return to describe what is returned

• Use @param to describe each parameter

• Use @throws to describe every exception explicitly

thrown by the method

 Link to other classes
• Use @link to link to classes

• Use @linkplain in opening statement

11

Example method javadocs.

 /**

 * Get the {@linkplain GuessGame game} for the current user.

 * The user is identified by a {@linkplain Session browser session}.

 *

 * @param session

 * The HTTP {@link Session}, must not be null

 *

 * @return

 * An existing or new {@link GuessGame}

 *

 * @throws NullPointerException

 * when the session parameter is null

 */

 public GuessGame get(final Session session)

12

Use @linkplain in

the opening

statement.

Use @link in all

other clauses.

Use in-line comments to communicate algorithms
and intention.

Use in-line comments to describe an algorithm
• Dos:
 Use pseudo-code steps

 Explain complex data structures

• Don'ts:
 Don't repeat the code in English
count++; // increment the count

Use comments to express issues and intentions
• A TODO comment hints at a future feature

• A FIX (or FIXME) comment points to a known bug

that is low priority

13

